
Convolution-Based Gomoku Game State Evaluation

Algorithm

Peizhi Yan
(Lakehead University, Thunder Bay, Ontario, Canada

pyan@lakeheadu.ca)

Abstract: Convolution is frequently used in pattern recognition tasks, such as face recognition

and image classification. As same as many other board games, the traditional approach to

evaluate a given Gomoku game state is by using a lot of conditional statements to recognize

specific patterns and score the game state regarding the patterns. In this algorithm, the simple 2-

dimensional convolution operations replace many conditional statements. This algorithm

tremendously reduced the number of codes in a Gomoku game evaluation function, therefore,

convenient for coding and debugging. Furthermore, this approach also has enlightening

significance in designing other board game evaluation algorithms.

Keywords: Convolution, Gomoku, Evaluation Function

Categories: D.2.0, G.1.3, I.2.1, J.0

1 Introduction

Gomoku game is an ancient board game played by two players in each game. It is

traditionally played on a game board with 1515 grid intersections. The first player

who forms an unbroken chain of five stones in the same color in a row is the winner.

The unbroken chain of five stones could be vertical, horizontal, or diagonal (left-

diagonal, right-diagonal). So there are four basic winning patterns. Not like many

other board games such as chess and Shogi, the patterns on a Gomoku game board are

intuitive. In other words, the winning patterns can be directly perceived through the

visual sense. However, in the traditional approach of designing a Gomoku game

evaluation function, the designers need to use many codes to recognize the specific

visual patterns on a game board (or game state). Therefore, in a traditional Gomoku

game evaluation function, there are many redundant conditional statements and loop

statements. Some recent studies attempt to train a convolutional neural network as a

value network (like an evaluation function) or a policy network (to make move

predictions). However, the performance of those approaches is pretty weak.

Moreover, training a convolutional neural network to play Gomoku is much harder

than training it as an image classifier. Motivated by the convolution operation in a

convolutional neural network, we designed a convolutional approach to recognize
specific visual patterns on a given Gomoku game state.

Our algorithm uses 2-dimensional convolution operation to process the encoded

Gomoku game state with some pre-defined filters to recognize and count the number

of specific visual patterns on the given game state. The designers of Gomoku game

evaluation functions can define the specific patterns as filters. This approach

significantly reduces the complexity of development and maintenance of the Gomoku

game evaluation function.

The rest of this paper is structured as follows. Section 2 gives the algorithm in full

details, including the encoding of Gomoku game state as well as the detailed steps of

applying this algorithm to evaluate a Gomoku game state.

2 Algorithm

One of the prerequisites of this algorithm is the pre-defined filters. Those filters are all

2-dimensional matrices. Each filter contains a specific visual pattern. We also need to

assign weights to each of the filters. The weight represents how important the pattern

it associates with is in the game state (a more considerable weight represents a higher

importance level). In our experiment, we use only 16 filters to detect 16 different

patterns (see Figure 1). We use a 1515 2-dimensional matrix of integers to encode

the Gomoku game state: 0 represents the empty position; 1 represents the white stone

(or the stone of the human player); -1 represents the black stone (or the stone of the

artificial intelligence player). We also need an integer matrix that has the same size of

the encoded Gomoku game state as the value gradient matrix. Each value in the value

gradient represents the value to make a move at that position (this equivalent to a

game search tree only has depth 1).

Figure 1: An example set of filters. The first row of filters are 55 matrices, the

second row of filters are 44 matrices, the third row of matrices are 33 matrices, the

last row of filters are 22 matrices. In this figure, blue represents the value is zero,

yellow represents the value is one.

We use integer x and y to represent row index and column index. B is the encoded

game state matrix, V is the value gradient matrix. We also need a set of filters  =

{F1, F2, F3, … , Fn}, a set of weights  = {w1, w2, w3, … , wn}. The overall procedure

of this algorithm is described as follows:

Step 1: Initialize B and V with all zeros. Create an inverse version of B, name it as

B’ (B’x,y = -Bx,y).

Step 2: Loop through all the positions in B (totally 1515=225 positions). For each

non-empty (occupied) position (x,y), set the value of Vx,y to 0. For each vacant

position, do step 3. Once step 2 finishes, stop the algorithm. V is the final value

gradient matrix.

Step 3: Temporarily set the value of both Bx,y and B’x,y to 1, do step 4 to get the

value: . Vx,y =  + ƒ(x,y), where ƒ is the constraint formula (see 2.2).

Step 4: For each filter Fi  , do the 2-dimensional convolution operation (see 2.1)

with B, make the output matrix as M. Count the number of the values in M that equal

to the number of non-zero values  in Fi, make it as c. Multiply c by wi, make the

result as a. Do the same thing to B’, make the result as b. Return the value v = (a+

b)/2 to step 3.

2.1 2-Dimensional Convolution Operation

We apply full 2-dimensional convolution operation to the game state matrix (with

zero padding) with the filter (size is aa). The size of the output matrix is: bb, where

b = (15+2(a-1))-(a-1) = 15+(a-1). When the filter detects the same visual pattern in

the game state, it will generate a value  which is the number of non-zero values in the

filter. By counting the number of values that equal to  in the output, we will get the

number of the visual pattern in the filter that appears in the game state.

Figure 2: Left sub-figure is the encoded Gomoku game state. Right sub-graph is the

output after a full 2-dimensional convolution operation with the filter in Figure 1 (the

third filter in the second row).

2.2 Constraint Formula

Without consideration of the stones on a Gomoku game board, the more a position
near the center of the game board, the higher the value is. This skill plays a significant

role in the first several moves in each Gomoku game. To constraint the Gomoku

artificial intelligence make a move near the center of the board in the first several

moves, we come up with a constraint formula ƒ(x,y) = /{[x-(15/2)]2+[y-(15/2)]2},

where  is a tuneable parameter (we use =10 in our experiment).

Figure 3: The output of ƒ(x,y) when =10, and both x and y  [0,14].

	Convolution-Based Gomoku Game State Evaluation Algorithm
	1 Introduction
	2 Algorithm
	2.1 2-Dimensional Convolution Operation
	2.2 Constraint Formula

