
NEO-3DF: Novel Editing-Oriented 3D Face
Creation and Reconstruction
Supplementary Material

Peizhi Yan, James Gregson, Qiang Tang, Rabab Ward, Zhan Xu and Shan Du

Paper ID 111

We provide more technical details as well as results in this supplementary
material.

1 Neural Network Architectures

The face image encoder in our framework is a FaceNet [7]. We use a Pytorch
implementation of the FaceNet [2]. The network architecture is Inception-v1 [9],
and it was trained on the VGGFace2 dataset [1]. The input shape of the FaceNet
is 224 × 224 × 3 (RGB color channel). The encoded face representation vector
(output of the FaceNet) is 512-dimensional.

FaceNet

Offset

Regressor

En
co

de
d

Fa
ce

R
ep

re
se

nt
at

io
n

Blending

Module

2D Image 3D Face

Shape

Mapping
Module

Editing
Controllers

+

+

+

+

+

Vertex
Offsets

Latent Offsets

Fig. 1. The proposed NEO-3DF framework for single-image 3D face reconstruction
and editing.

Except for FaceNet, in our framework, other neural networks (Ei, Fi, Di,
and the offset regressor network) are Multilayer Perceptron (MLP) networks. Ei

and Di constitute an VAE network that learns to reconstruct 3D shape Si. The
shape latent regressors Fi are added to replace the Ei to couple the FaceNet
encoder with the shape decoders Di in single-image 3D face reconstruction task
(see Fig. 1). Table 1 to Table 4 show the description of network architectures of
Ei, Fi, Di, and the offset regressor network respectively. |Vi| is the number of
vertices of segment i, and dzi is the dimension of latent representation of segment
i. Note that, the output of offset regressor network has 10 dimensions because
only five segments need offset along y-axis (up and down) and z-axis (forward
and backward).

2 P. Yan et al.

Table 1. Shape Encoder Network (Ei) Architecture

Layer
Previous
Layer

Activation Input Size Output Size

input N/A N/A N/A [batch size, |Vi| × 3]
fc-1 input ReLU [batch size, |Vi| × 3] [batch size, 128]
fc-2 fc-1 ReLU [batch size, 128] [batch size, 64]

fc-mu fc-2 Linear [batch size, 64] [batch size, dzi]
fc-sigma fc-2 Exponential [batch size, 64] [batch size, dzi]

Table 2. Latent Regressor Network (Fi) Architecture

Layer
Previous
Layer

Activation Input Size Output Size

input N/A N/A N/A [batch size, 512]
fc-1 input ReLU [batch size, 512] [batch size, 128]
fc-2 fc-1 ReLU [batch size, 128] [batch size, 64]

fc-mu fc-2 Linear [batch size, 64] [batch size, dzi]
fc-sigma fc-2 Exponential [batch size, 64] [batch size, dzi]

Table 3. Shape Decoder Network (Di) Architecture

Layer
Previous
Layer

Activation Input Size Output Size

input N/A N/A N/A [batch size, dzi]
fc-1 input ReLU [batch size, dzi] [batch size, 128]
fc-2 fc-1 ReLU [batch size, 128] [batch size, 512]

fc-output fc-2 Linear [batch size, 512] [batch size, |Vi| × 3]

Table 4. Offset Regressor Network Architecture

Layer
Previous
Layer

Activation Input Size Output Size

input N/A N/A N/A [batch size, dz0]
fc-1 input ReLU [batch size, dz0] [batch size, 32]
fc-2 fc-1 ReLU [batch size, 32] [batch size, 32]

fc-output fc-2 Linear [batch size, 32] [batch size, 10]

NEO-3DF Supplementary Material 3

2 Differentiable As-Rigid-As-Possible

We briefly review the mathematical notations used in the proposed differen-
tiable ARAP in Table 5. The pseudo-code for our differentiable ARAP is in
Algorithm 1, and the flowchart of it is in Fig. 2. Note that L is the combinato-
rial Laplacian (L = Deg − Adj, where Deg and Adj are the degree matrix and
the adjacency matrix of the mesh graph topology). Although using cotangent-
weight Laplacian (as used in the original ARAP [8]) will give better results, the
computational overhead is much higher than using simple combinatorial Lapla-
cian. Therefore, we only use the cotangent-weight Laplacian to derive the final
result while using combinatorial Laplacian in fine-tuning. In Algorithm 1, A−1

is pre-computed for a given mesh. We treat L and A−1 as constant matrices,
thus not backpropagating the error through it.

Table 5. Mathematical Notations for Differentiable ARAP

Notation Space Description

np R The number of vertices of the face mesh.

nc R The number of constraint vertices.

P Rnp×3 The vertex positions (coordinates).

H Rnc×3 The constraint vertex positions.

C Rnc×np
The sparse constraint matrix, such that Cij = 1 only if

the jth vertex of the mesh is the ith constraint vertex.

L Rnp×np The Laplacian matrix of the face mesh.

P ′ Rnp×3 The new vertex positions of the face mesh.

A R(np+nc)×(np+nc) A =

LTL CT

C 0


W R(np+nc)×3 The result matrix of linear system AW = R,

and the first np rows (Wij)i∈{1..np},j∈{1..3} is P ′.

R R(np+nc)×3 The right-hand-side matrix of linear system AW = R.

Except for the initial iteration (when iter is 0), we need to estimate the new
right-hand-side R using estimate rhs(). Here, we take advantage of the fact that
L is a sparse matrix to reduce computational overhead. We define N(i) as the
set of neighbor vertex indices of the ith vertex, and N(i)k as the kth neighbor
vertex index (neighbor vertices arranged in index ascending order) of the ith

vertex. The pseudo-code for estimate rhs() is in Algorithm 2. Note that the
pseudo-code only conveys the idea of our algorithm. It is not optimized for a
particular programming language. When implementing it, consider using matrix
operations to reduce the explicit loops.

4 P. Yan et al.

Algorithm 1 Differentiable ARAP

Input: P , H, L, and A−1

Output: P ′

Require: niter ≥ 1
iter ← 0
while iter ≤ niter do

if iter = 0 then
// Initialize the right-hand-side.

R←
[
LTLP
H

]
else

// Estimate new right-hand-side.

R←
[
estimate rhs()

H

]
end if
// Solve the linear system AW = R.
W ← A−1R
// Update new vertex positions.
P ′ ← (Wij)i∈{1..np},j∈{1..3}
iter ← iter + 1

end while

Initial Iteration

Iteration 1

Iteration

D
iff

er
en

tia
bl

e
 A

R
AP

-B
as

ed
Bl

en
di

ng
 M

od
ul

e

Invert

Fig. 2. Flowchart of our differentiable ARAP-based blending module. Dashed lines
indicate that the loss can backpropagate through.

NEO-3DF Supplementary Material 5

Algorithm 2 Estimate Right-Hand-Side

Input: P , P ′, L
Output: estimate rhs()
Prepare Γ according to the mesh topology.
// Step 1: Get the un-deformed and deformed 1-ring vertex positions relative to each
vertex, weighted by the Laplace edge weight.
Ω ← 0np×np×3 // Ω ∈ Rnp×np×3 is a sparse matrix.
Ω′ ← 0np×np×3 // Ω′ ∈ Rnp×np×3 is a sparse matrix.
for i ∈ {1..np} do

for j ∈ N(i) do
(Ωijm)m∈{1..3} ← (Pim − Pjm) · Lij

(Ω′
ijm)m∈{1..3} ← (P ′

im − P ′
jm) · Lij

end for
end for
// Step 2: Estimate the rotation from the un-deformed to the deformed mesh using
the singular value decomposition (SVD).
R← 0np×3×3 // Initialize the rotations.
for i ∈ {1..np} do

B ← 0|N(i)|×3

B′ ← 0|N(i)|×3

for k ∈ {1..|N(i)|} do
j ← N(i)k
(Bkm)m∈{1..3} ← Ωijm

(B′
km)m∈{1..3} ← Ω′

ijm

end for
K ← B′TB // Compute the covariance matrix.
U,S,VT ← SV D(K) // Take the Singular Value Decomposition (SVD) of K.
s← sgn(det(UVT)) // sgn(·) is the sign function.

S′ ←

1 0 0
0 1 0
0 0 s

 // To ensure det(Ri) > 0.

(Rimn)m,n∈{1..3} ← (US′VT)mn

end for
// Step 3: Rotate each un-deformed neighborhood edge by the average of its con-
nected vertices to get the rotated differential coordinates for each vertex.
D← 0np×3

for i ∈ {1..np} do
for k ∈ {1..|N(i)|} do

j ← N(i)k
J← Rj +Ri // J ∈ R3×3.
(Dim)m∈{1..3} ← Dim +

∑
n∈{1..3}[Jmn ×Ωikn × (0.5× Lij)]

end for
end for
Return: LD

6 P. Yan et al.

The main idea of ARAP is to minimize the energy function (1) for each
vertex i.

Ei =
∑

j∈N(i)

wij ||(p′i − p′j)−Ri(pi − pj)||2, (1)

where wij is the Laplace weight of edge ij, p′i is the new vertex position of i, pi
is the original vertex position of i. The ARAP alternates between updating all
the p′i and Ri (∀i ∈ np) in each iteration. When p′i are fixed, Ri are estimated
to look for the best rigid rotation. When Ri are fixed, the function is minimized
by solving the Laplace equation with edge ij rotated.

3 More Visualization Results

3.1 3D-to-2D Alignment

To demonstrate the effectiveness of our shape adjusting method (using differen-
tiable ARAP), we show the union minus intersection map (as well as the IoU
value) between the ground-truth 2D face segments and rendered face segments
in Fig. 3.

3.2 Local Editing

The list of selected facial features used for editing is shown in Table 6. We adjust
each controller separately to be −3σ and +3σ, then show the maximum change
of each vertex location (Euclidean distance measured in millimeters) from the
original mean face shape. The results are visualized as rendered 2D heatmaps
(see Fig. 4). More examples of our intuitive editing results are shown in Fig. 5.

NEO-3DF Supplementary Material 7

IoU = 0.610

IoU = 0.599

IoU = 0.646

IoU = 0.617

IoU = 0.617

IoU = 0.586

IoU = 0.661

IoU = 0.766

IoU = 0.717

IoU = 0.740

IoU = 0.723

IoU = 0.721

IoU = 0.712

IoU = 0.761

Deep 3DMM
NEO-3DF
(Proposed)

Fig. 3. 3D-2D segments alignment results.

8 P. Yan et al.

Table 6. List of Facial Features Selected for Editing

Group Feature Name
Editing

Controller
Reference

Eyebrows
Curvature Strength EB-CS

[6]Length EB-L
Thickness EB-T

Eyes

Canthus Distance EY-CD

[5, 6]
Lateral Canthus (up/down) EY-LC

Height EY-H
Pupils Distance EY-PD

Nose

Bridge Width NS-BW

[3, 4]

Height NS-H
Width NS-W

Tip Depth NS-TD
Tip Height NS-TH

Tip Size NS-TS

Upper Lip
Height UL-H

[4]Width UL-W
Labial Fissure Width UL-LFW

Lower Lip
Height LL-H

[4]Width LL-W
End Height LL-EH

Rest

Facial Height RS-FH

[4]

Facial Width RS-FW
Lower Facial Depth RS-LFD
Lower Facial Height RS-LFH
Mandibular Width RS-MW

Middle Facial Depth RS-MFD
Upper Facial Depth RS-UFD
Upper Facial Height RS-UFH

NEO-3DF Supplementary Material 9

EB-CS EB-L EB-T EY-CD EY-H EY-PD EY-LC

NS-BW NS-H NS-TD NS-TH NS-TS NS-W

UL-H UL-W UL-LFW LL-H LL-W LL-EH

RS-FH RS-FD RS-LFH RS-MW RS-FW RS-MFD RS-UFD RS-UFH

0

max

Fig. 4. Heatmaps of editing controllers.

Image Reconstruction Mandibular Width Eye Height
 Nose Breadth
 Lip Height
 Eyebrow Thickness

Fig. 5. Face editing demonstration.

10 P. Yan et al.

References

1. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. In: 2018 13th IEEE international conference
on automatic face & gesture recognition (FG 2018). pp. 67–74. IEEE (2018)

2. Esler, T.: Face recognition using pytorch (2020),
https://github.com/timesler/facenet-pytorch

3. Farkas, L.G., Kolar, J.C., Munro, I.R.: Geography of the nose: a morphometric
study. Aesthetic plastic surgery 10(1), 191–223 (1986)

4. Kesterke, M.J., Raffensperger, Z.D., Heike, C.L., Cunningham, M.L., Hecht, J.T.,
Kau, C.H., Nidey, N.L., Moreno, L.M., Wehby, G.L., Marazita, M.L., et al.: Using
the 3d facial norms database to investigate craniofacial sexual dimorphism in healthy
children, adolescents, and adults. Biology of sex differences 7(1), 1–14 (2016)

5. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06). vol. 1, pp. 387–394. IEEE (2006)

6. Rhee, S.C., Woo, K.S., Kwon, B.: Biometric study of eyelid shape and dimensions of
different races with references to beauty. Aesthetic plastic surgery 36(5), 1236–1245
(2012)

7. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

8. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on
Geometry processing. vol. 4, pp. 109–116 (2007)

9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

