NEO-3DF: Novel Editing-Oriented 3D Face Creation and Reconstruction
 Supplementary Material

Peizhi Yan, James Gregson, Qiang Tang, Rabab Ward, Zhan Xu and Shan Du

Paper ID 111
We provide more technical details as well as results in this supplementary material.

1 Neural Network Architectures

The face image encoder in our framework is a FaceNet [7]. We use a Pytorch implementation of the FaceNet [2]. The network architecture is Inception-v1 [9], and it was trained on the VGGFace2 dataset [1]. The input shape of the FaceNet is $224 \times 224 \times 3$ (RGB color channel). The encoded face representation vector (output of the FaceNet) is 512-dimensional.

Fig. 1. The proposed NEO-3DF framework for single-image 3D face reconstruction and editing.

Except for FaceNet, in our framework, other neural networks $\left(E_{i}, F_{i}, D_{i}\right.$, and the offset regressor network) are Multilayer Perceptron (MLP) networks. E_{i} and D_{i} constitute an VAE network that learns to reconstruct 3D shape S_{i}. The shape latent regressors F_{i} are added to replace the E_{i} to couple the FaceNet encoder with the shape decoders D_{i} in single-image 3D face reconstruction task (see Fig. 1). Table 1 to Table 4 show the description of network architectures of E_{i}, F_{i}, D_{i}, and the offset regressor network respectively. $\left|V_{i}\right|$ is the number of vertices of segment i, and $d_{z_{i}}$ is the dimension of latent representation of segment i. Note that, the output of offset regressor network has 10 dimensions because only five segments need offset along y-axis (up and down) and z-axis (forward and backward).

Table 1. Shape Encoder Network (E_{i}) Architecture

Layer	Previous Layer	Activation	Input Size	Output Size
input	N/A	N/A	N/A	$\left[\right.$ batch_size, $\left.\left\|V_{i}\right\| \times 3\right]$
fc-1	input	ReLU	$\left[\right.$ batch_size,$\left.\left\|V_{i}\right\| \times 3\right]$	$[$ batch_size, 128$]$
fc-2	fc-1	ReLU	$[$ batch_size, 128$]$	$[$ batch_size, 64$]$
fc-mu	fc-2	Linear	$[$ batch_size, 64]	$\left[\right.$ batch_size, $\left.d_{z_{i}}\right]$
fc-sigma	fc-2	Exponential	$[$ batch_size, 64$]$	$\left[\right.$ batch_size, $\left.d_{z_{i}}\right]$

Table 2. Latent Regressor Network (F_{i}) Architecture

Layer	Previous Layer	Activation	Input Size	Output Size
input	N/A	N/A	N/A	[batch_size, 512]
fc-1	input	ReLU	[batch_size, 512]	[batch_size, 128]
fc-2	fc-1	ReLU	[batch_size, 128]	[batch_size, 64]
fc-mu	fc-2	Linear	[batch_size, 64]	$\left[\right.$ batch_size, $\left.d_{z_{i}}\right]$
fc-sigma	fc-2	Exponential	[batch_size, 64]	$\left[b a t c h _s i z e, d_{z_{i}}\right]$

Table 3. Shape Decoder Network (D_{i}) Architecture

Layer	Previous Layer	Activation	Input Size	Output Size
input	N/A	N/A	N/A	$\left[\right.$ batch_size, $\left.d_{z_{i}}\right]$
fc-1	input	ReLU	$\left[\right.$ batch_size, $\left.d_{z_{i}}\right]$	$[$ batch_size, 128]
fc-2	fc-1	ReLU	$[$ batch_size, 128] $]$	$[$ batch_size, 512]
fc-output	fc-2	Linear	$[$ batch_size, 512] $]$	$\left[\right.$ batch_size, $\left.\left\|V_{i}\right\| \times 3\right]$

Table 4. Offset Regressor Network Architecture

Layer	Previous Layer	Activation	Input Size	Output Size
input	N/A	N/A	N/A	$\left[\begin{array}{l}\left.\text { batch_size, } d_{z_{0}}\right] \\ \text { fc-1 } \\ \text { input } \\ \text { fc-2 }\end{array}\right.$
fc-1	ReLU	ReLU	$\left[\right.$ batch_size, $\left.d_{z_{0}}\right]$	
$[$ batch_size, 32$]$	$[$ batch_size,32 $]$			
fc-output	fc-2	Linear	$[$ batch_size, 32$]$	

2 Differentiable As-Rigid-As-Possible

We briefly review the mathematical notations used in the proposed differentiable ARAP in Table 5. The pseudo-code for our differentiable ARAP is in Algorithm 1, and the flowchart of it is in Fig. 2. Note that L is the combinatorial Laplacian ($L=D e g-A d j$, where $D e g$ and $A d j$ are the degree matrix and the adjacency matrix of the mesh graph topology). Although using cotangentweight Laplacian (as used in the original ARAP [8]) will give better results, the computational overhead is much higher than using simple combinatorial Laplacian. Therefore, we only use the cotangent-weight Laplacian to derive the final result while using combinatorial Laplacian in fine-tuning. In Algorithm 1, A^{-1} is pre-computed for a given mesh. We treat L and A^{-1} as constant matrices, thus not backpropagating the error through it.

Table 5. Mathematical Notations for Differentiable ARAP

Notation	Space	Description
n_{p}	\mathbb{R}	The number of vertices of the face mesh.
n_{c}	\mathbb{R}	The number of constraint vertices.
P	$\mathbb{R}^{n_{p} \times 3}$	The vertex positions (coordinates).
H	$\mathbb{R}^{n_{c} \times 3}$	The constraint vertex positions.
C	$\mathbb{R}^{n_{c} \times n_{p}}$	The sparse constraint matrix, such that $C_{i j}=1$ only if the $j^{t h}$ vertex of the mesh is the $i^{t h}$ constraint vertex.
L	$\mathbb{R}^{n_{p} \times n_{p}}$	The Laplacian matrix of the face mesh.
P^{\prime}	$\mathbb{R}^{n_{p} \times 3}$	The new vertex positions of the face mesh.
A	$\mathbb{R}^{\left(n_{p}+n_{c}\right) \times\left(n_{p}+n_{c}\right)}$	$\left.\begin{array}{cc}L^{\mathrm{T}} L \quad C^{\mathrm{T}} \\ C \quad \mathbf{0}\end{array}\right]$
W	$\mathbb{R}^{\left(n_{p}+n_{c}\right) \times 3}$	The result matrix of linear system $A W=R$, and the first n_{p} rows $\left(W_{i j}\right)_{i \in\left\{1 . . n_{p}\right\}, j \in\{1 . .3\}}$ is P^{\prime}.
R	$\mathbb{R}^{\left(n_{p}+n_{c}\right) \times 3}$	The right-hand-side matrix of linear system $A W=R$.

Except for the initial iteration (when iter is 0), we need to estimate the new right-hand-side R using estimate_rhs (). Here, we take advantage of the fact that L is a sparse matrix to reduce computational overhead. We define $N(i)$ as the set of neighbor vertex indices of the $i^{t h}$ vertex, and $N(i)_{k}$ as the $k^{t h}$ neighbor vertex index (neighbor vertices arranged in index ascending order) of the $i^{t h}$ vertex. The pseudo-code for estimate_rhs() is in Algorithm 2. Note that the pseudo-code only conveys the idea of our algorithm. It is not optimized for a particular programming language. When implementing it, consider using matrix operations to reduce the explicit loops.

```
Algorithm 1 Differentiable ARAP
    Input: \(P, H, L\), and \(A^{-1}\)
    Output: \(P^{\prime}\)
    Require: \(n_{\text {iter }} \geq 1\)
    iter \(\leftarrow 0\)
    while iter \(\leq n_{\text {iter }}\) do
        if iter \(=0\) then
            // Initialize the right-hand-side.
                \(R \leftarrow\left[\begin{array}{c}L^{\mathrm{T}} L P \\ H\end{array}\right]\)
        else
            // Estimate new right-hand-side.
            \(R \leftarrow\left[\begin{array}{c}\text { estimate_rhs }() \\ H\end{array}\right]\)
        end if
        // Solve the linear system \(A W=R\).
        \(W \leftarrow A^{-1} R\)
        // Update new vertex positions.
        \(P^{\prime} \leftarrow\left(W_{i j}\right)_{i \in\left\{1 . . n_{p}\right\}, j \in\{1 . .3\}}\)
        iter \(\leftarrow\) iter +1
    end while
```


Fig. 2. Flowchart of our differentiable ARAP-based blending module. Dashed lines indicate that the loss can backpropagate through.

```
Algorithm 2 Estimate Right-Hand-Side
    Input: \(P, P^{\prime}, L\)
    Output: estimate_rhs()
    Prepare \(\Gamma\) according to the mesh topology.
    // Step 1: Get the un-deformed and deformed 1-ring vertex positions relative to each
    vertex, weighted by the Laplace edge weight.
    \(\Omega \leftarrow \mathbf{0}^{n_{p} \times n_{p} \times 3} / / \Omega \in \mathbb{R}^{n_{p} \times n_{p} \times 3}\) is a sparse matrix.
    \(\Omega^{\prime} \leftarrow \mathbf{0}^{n_{p} \times n_{p} \times 3} / / \Omega^{\prime} \in \mathbb{R}^{n_{p} \times n_{p} \times 3}\) is a sparse matrix.
    for \(i \in\left\{1 . . n_{p}\right\}\) do
        for \(j \in N(i)\) do
            \(\left(\Omega_{i j m}\right)_{m \in\{1 . .3\}} \leftarrow\left(P_{i m}-P_{j m}\right) \cdot L_{i j}\)
            \(\left(\Omega_{i j m}^{\prime}\right)_{m \in\{1 . .3\}} \leftarrow\left(P_{i m}^{\prime}-P_{j m}^{\prime}\right) \cdot L_{i j}\)
        end for
    end for
    // Step 2: Estimate the rotation from the un-deformed to the deformed mesh using
    the singular value decomposition (SVD).
    \(\mathbf{R} \leftarrow \mathbf{0}^{n_{p} \times 3 \times 3} / /\) Initialize the rotations.
    for \(i \in\left\{1 . . n_{p}\right\}\) do
        \(B \leftarrow \mathbf{0}^{|N(i)| \times 3}\)
            \(B^{\prime} \leftarrow \mathbf{0}^{|N(i)| \times 3}\)
            for \(k \in\{1 . .|N(i)|\}\) do
                    \(j \leftarrow N(i)_{k}\)
                    \(\left(B_{k m}\right)_{m \in\{1 . .3\}} \leftarrow \Omega_{i j m}\)
                    \(\left(B_{k m}^{\prime}\right)_{m \in\{1 . .3\}} \leftarrow \Omega_{i j m}^{\prime}\)
            end for
            \(K \leftarrow B^{\prime \mathrm{T}} B / /\) Compute the covariance matrix.
            \(\mathbf{U}, \mathbf{S}, \mathbf{V}^{\mathrm{T}} \leftarrow S V D(K) / /\) Take the Singular Value Decomposition (SVD) of \(K\).
            \(\mathbf{s} \leftarrow \operatorname{sgn}\left(\operatorname{det}\left(\mathbf{U V}^{\mathrm{T}}\right)\right) / / \operatorname{sgn}(\cdot)\) is the sign function.
            \(\mathbf{S}^{\prime} \leftarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{s}\end{array}\right] / /\) To ensure \(\operatorname{det}\left(\mathbf{R}_{i}\right)>0\).
            \(\left(\mathbf{R}_{i m n}\right)_{m, n \in\{1 . .3\}} \leftarrow\left(\mathbf{U S}^{\prime} \mathbf{V}^{\mathbf{T}}\right)_{m n}\)
    end for
    // Step 3: Rotate each un-deformed neighborhood edge by the average of its con-
    nected vertices to get the rotated differential coordinates for each vertex.
    \(\mathbf{D} \leftarrow \mathbf{0}^{n_{p} \times 3}\)
    for \(i \in\left\{1 . . n_{p}\right\}\) do
            for \(k \in\{1 . .|N(i)|\}\) do
                \(j \leftarrow N(i)_{k}\)
                    \(\mathbf{J} \leftarrow \mathbf{R}_{j}+\mathbf{R}_{i} / / \mathbf{J} \in \mathbb{R}^{3 \times 3}\).
            \(\left(\mathbf{D}_{i m}\right)_{m \in\{1 . .3\}} \leftarrow \mathbf{D}_{i m}+\sum_{n \in\{1 . .3\}}\left[\mathbf{J}_{m n} \times \Omega_{i k n} \times\left(0.5 \times L_{i j}\right)\right]\)
        end for
    end for
    Return: LD
```

The main idea of ARAP is to minimize the energy function (1) for each vertex i.

$$
\begin{equation*}
\mathcal{E}_{i}=\sum_{j \in N(i)} w_{i j}\left\|\left(p_{i}^{\prime}-p_{j}^{\prime}\right)-\mathbf{R}_{i}\left(p_{i}-p_{j}\right)\right\|^{2} \tag{1}
\end{equation*}
$$

where $w_{i j}$ is the Laplace weight of edge $i j, p_{i}^{\prime}$ is the new vertex position of i, p_{i} is the original vertex position of i. The ARAP alternates between updating all the p_{i}^{\prime} and $\mathbf{R}_{i}\left(\forall i \in n_{p}\right)$ in each iteration. When p_{i}^{\prime} are fixed, \mathbf{R}_{i} are estimated to look for the best rigid rotation. When \mathbf{R}_{i} are fixed, the function is minimized by solving the Laplace equation with edge $i j$ rotated.

3 More Visualization Results

3.1 3D-to-2D Alignment

To demonstrate the effectiveness of our shape adjusting method (using differentiable ARAP), we show the union minus intersection map (as well as the IoU value) between the ground-truth 2D face segments and rendered face segments in Fig. 3.

3.2 Local Editing

The list of selected facial features used for editing is shown in Table 6. We adjust each controller separately to be -3σ and $+3 \sigma$, then show the maximum change of each vertex location (Euclidean distance measured in millimeters) from the original mean face shape. The results are visualized as rendered 2D heatmaps (see Fig. 4). More examples of our intuitive editing results are shown in Fig. 5.

Fig. 3. 3D-2D segments alignment results.

Table 6. List of Facial Features Selected for Editing

Group	Feature Name	Editing Controller	Reference
	Curvature Strength	EB-CS	
Eyebrows	Length	EB-L	[6]
	Thickness	EB-T	
Eyes	Canthus Distance	EY-CD	[5, 6]
	Lateral Canthus (up/down)	EY-LC	
	Height	EY-H	
	Pupils Distance	EY-PD	
Nose	Bridge Width	NS-BW	[3, 4]
	Height	NS-H	
	Width	NS-W	
	Tip Depth	NS-TD	
	Tip Height	NS-TH	
	Tip Size	NS-TS	
Upper Lip	Height	UL-H	[4]
	Width	UL-W	
	Labial Fissure Width	UL-LFW	
Lower Lip	Height	LL-H	[4]
	Width	LL-W	
	End Height	LL-EH	
Rest	Facial Height	RS-FH	[4]
	Facial Width	RS-FW	
	Lower Facial Depth	RS-LFD	
	Lower Facial Height	RS-LFH	
	Mandibular Width	RS-MW	
	Middle Facial Depth	RS-MFD	
	Upper Facial Depth	RS-UFD	
	Upper Facial Height	RS-UFH	

Fig. 4. Heatmaps of editing controllers.

Fig. 5. Face editing demonstration.

References

1. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for recognising faces across pose and age. In: 2018 13th IEEE international conference on automatic face \& gesture recognition (FG 2018). pp. 67-74. IEEE (2018)
2. Esler, T.: Face recognition using pytorch (2020), https://github.com/timesler/facenet-pytorch
3. Farkas, L.G., Kolar, J.C., Munro, I.R.: Geography of the nose: a morphometric study. Aesthetic plastic surgery 10(1), 191-223 (1986)
4. Kesterke, M.J., Raffensperger, Z.D., Heike, C.L., Cunningham, M.L., Hecht, J.T., Kau, C.H., Nidey, N.L., Moreno, L.M., Wehby, G.L., Marazita, M.L., et al.: Using the 3d facial norms database to investigate craniofacial sexual dimorphism in healthy children, adolescents, and adults. Biology of sex differences 7(1), 1-14 (2016)
5. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). vol. 1, pp. 387-394. IEEE (2006)
6. Rhee, S.C., Woo, K.S., Kwon, B.: Biometric study of eyelid shape and dimensions of different races with references to beauty. Aesthetic plastic surgery 36(5), 1236-1245 (2012)
7. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 815-823 (2015)
8. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry processing. vol. 4, pp. 109-116 (2007)
9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1-9 (2015)
